A general halfspace theorem for constant mean curvature surfaces

نویسنده

  • Laurent Mazet
چکیده

In this paper, we prove a general halfspace theorem for constant mean curvature surfaces. Under certain hypotheses, we prove that, in an ambient space M, any constant mean curvature H0 surface on one side of a constant mean curvature H0 surface Σ0 is an equidistant surface to Σ0. The main hypotheses of the theorem are that Σ0 is parabolic and the mean curvature of the equidistant surfaces to Σ0 evolves in a certain way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure Theorems for Constant Mean Curvature Surfaces Bounded by a Planar Curve

3 is the boundary of two spherical caps of constant mean curvature H for any positive number H, which is at most the radius of C. It is natural to ask whether spherical caps are the only possible examples. Some examples of constant mean curvature immersed tori by Wente [7] indicate that there are compact genus-one immersed constant mean curvature surfaces with boundary C that are approximated b...

متن کامل

Local Prescribed Mean Curvature foliations in cosmological spacetimes

A theorem about local in time existence of spacelike foliations with prescribed mean curvature in cosmological spacetimes will be proved. The time function of the foliation is geometrically defined and fixes the diffeomorphism invariance inherent in general foliations of spacetimes. Moreover, in contrast to the situation of the more special constant mean curvature foliations, which play an impo...

متن کامل

Complete Embedded Minimal Surfaces of Finite Total Curvature

2 Basic theory and the global Weierstrass representation 4 2.1 Finite total curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 The example of Chen-Gackstatter . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Embeddedness and finite total curvature: necessary conditions . . . . . . . 20 2.3.1 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Not yet Determined Manuscript-nr. Remarks on the Darboux Transform of Isothermic Surfaces

We study Darboux and Christooel transforms of isothermic surfaces in Euclidean space. These transformations play a signiicant role in relation to integrable system theory. Surfaces of constant mean curvature turn out to be special among all isothermic surfaces: their parallel constant mean curvature surfaces are Christooel and Darboux transforms at the same time. We prove | as a generalization ...

متن کامل

The geometry of finite topology Bryant surfaces

In this paper we shall establish that properly embedded constant mean curvature one surfaces in H of finite topology are of finite total curvature and each end is regular. In particular, this implies the horosphere is the only simply connected such example, and the catenoid cousins the only annular examples of this nature. In general each annular end of such a surface is asymptotic to an end of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012